Announced in 2016, Gym is an open-source Python library designed to help with the development of support learning algorithms. It aimed to standardize how environments are specified in AI research, making published research study more quickly reproducible [24] [144] while offering users with a basic interface for connecting with these environments. In 2022, new developments of Gym have actually been transferred to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for support knowing (RL) research study on computer game [147] using RL algorithms and study generalization. Prior RL research study focused mainly on enhancing representatives to solve single jobs. Gym Retro provides the capability to generalize between games with comparable ideas however various appearances.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents initially do not have knowledge of how to even stroll, but are offered the goals of finding out to move and to press the opposing agent out of the ring. [148] Through this adversarial knowing process, the representatives learn how to adapt to changing conditions. When an agent is then removed from this virtual environment and placed in a new virtual environment with high winds, the representative braces to remain upright, suggesting it had discovered how to stabilize in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competitors between agents could develop an intelligence "arms race" that could increase a representative's ability to operate even outside the context of the competition. [148]
OpenAI 5
OpenAI Five is a group of 5 OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that find out to play against human gamers at a high ability level completely through trial-and-error algorithms. Before becoming a team of 5, the very first public presentation occurred at The International 2017, the yearly premiere championship competition for the video game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for two weeks of real time, and that the learning software was an action in the direction of creating software that can manage complex jobs like a surgeon. [152] [153] The system uses a type of support learning, as the bots learn with time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as killing an opponent and taking map objectives. [154] [155] [156]
By June 2018, the capability of the bots expanded to play together as a complete team of 5, and they had the ability to defeat groups of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibition matches against expert players, but wound up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champs of the game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' last public appearance came later on that month, where they played in 42,729 total games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's systems in Dota 2's bot gamer shows the challenges of AI systems in multiplayer online battle arena (MOBA) games and how OpenAI Five has shown making use of deep support knowing (DRL) representatives to attain superhuman competence in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl utilizes device learning to train a Shadow Hand, a human-like robotic hand, to control physical items. [167] It learns completely in simulation using the same RL algorithms and training code as OpenAI Five. OpenAI tackled the item orientation issue by utilizing domain randomization, a simulation approach which exposes the student to a range of experiences rather than trying to fit to truth. The set-up for Dactyl, aside from having movement tracking cameras, likewise has RGB cams to enable the robotic to manipulate an arbitrary item by seeing it. In 2018, OpenAI revealed that the system had the ability to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could solve a Rubik's Cube. The robotic was able to solve the puzzle 60% of the time. Objects like the Rubik's Cube introduce intricate physics that is harder to design. OpenAI did this by improving the toughness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of creating gradually harder environments. ADR differs from manual domain randomization by not requiring a human to specify randomization ranges. [169]
API
In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI designs developed by OpenAI" to let designers contact it for "any English language AI job". [170] [171]
Text generation
The business has actually popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")
The initial paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his associates, and released in preprint on OpenAI's site on June 11, 2018. [173] It demonstrated how a generative design of language could obtain world understanding and procedure long-range reliances by pre-training on a varied corpus with long stretches of contiguous text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language design and the successor to OpenAI's original GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with just limited demonstrative variations initially launched to the general public. The complete version of GPT-2 was not immediately launched due to concern about potential misuse, consisting of applications for composing phony news. [174] Some professionals expressed uncertainty that GPT-2 positioned a substantial danger.
In response to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to detect "neural fake news". [175] Other researchers, such as Jeremy Howard, warned of "the innovation to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be impossible to filter". [176] In November 2019, OpenAI released the complete variation of the GPT-2 language design. [177] Several sites host interactive demonstrations of different circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue unsupervised language designs to be general-purpose learners, illustrated by GPT-2 attaining modern precision and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not more trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain issues encoding vocabulary with word tokens by using byte pair encoding. This permits representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI stated that the complete variation of GPT-3 contained 175 billion parameters, [184] two orders of magnitude larger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 designs with as couple of as 125 million criteria were also trained). [186]
OpenAI mentioned that GPT-3 was successful at certain "meta-learning" jobs and could generalize the function of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer knowing in between English and Romanian, and between English and German. [184]
GPT-3 considerably improved benchmark results over GPT-2. OpenAI warned that such scaling-up of language models might be approaching or experiencing the basic ability constraints of predictive language models. [187] Pre-training GPT-3 needed several thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not immediately released to the general public for concerns of possible abuse, although OpenAI prepared to allow gain access to through a paid cloud API after a two-month complimentary private beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in personal beta. [194] According to OpenAI, the model can develop working code in over a dozen programs languages, systemcheck-wiki.de many efficiently in Python. [192]
Several problems with glitches, design flaws and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been implicated of discharging copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would discontinue assistance for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the updated technology passed a simulated law school bar examination with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could likewise check out, examine or create up to 25,000 words of text, and compose code in all major programming languages. [200]
Observers reported that the model of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based model, with the caveat that GPT-4 retained a few of the problems with earlier revisions. [201] GPT-4 is likewise efficient in taking images as input on ChatGPT. [202] OpenAI has declined to reveal various technical details and data about GPT-4, such as the exact size of the design. [203]
GPT-4o
On May 13, 2024, OpenAI revealed and launched GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained advanced lead to voice, multilingual, and vision standards, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially helpful for business, start-ups and developers looking for to automate services with AI agents. [208]
o1
On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have been created to take more time to think of their reactions, leading to higher accuracy. These models are especially reliable in science, coding, and systemcheck-wiki.de reasoning tasks, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3
On December 20, 2024, OpenAI revealed o3, the follower of the o1 thinking model. OpenAI also revealed o3-mini, a lighter and faster version of OpenAI o3. As of December 21, 2024, this design is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, security and security researchers had the chance to obtain early access to these designs. [214] The model is called o3 rather than o2 to prevent confusion with telecommunications companies O2. [215]
Deep research study
Deep research study is a representative established by OpenAI, revealed on February 2, 2025. It leverages the capabilities of OpenAI's o3 model to carry out extensive web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools allowed, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image classification
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to evaluate the semantic resemblance in between text and images. It can especially be utilized for image category. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer design that produces images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to interpret natural language inputs (such as "a green leather bag formed like a pentagon" or "an isometric view of an unfortunate capybara") and generate corresponding images. It can produce images of reasonable items ("a stained-glass window with an image of a blue strawberry") as well as items that do not exist in truth ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI revealed DALL-E 2, an upgraded variation of the model with more sensible results. [219] In December 2022, OpenAI released on GitHub software for Point-E, a new simple system for converting a text description into a 3-dimensional model. [220]
DALL-E 3
In September 2023, OpenAI revealed DALL-E 3, a more powerful model better able to create images from complex descriptions without manual timely engineering and render complex details like hands and text. [221] It was launched to the public as a ChatGPT Plus feature in October. [222]
Text-to-video
Sora
Sora is a text-to-video design that can generate videos based on brief detailed triggers [223] in addition to extend existing videos forwards or in reverse in time. [224] It can produce videos with resolution approximately 1920x1080 or 1080x1920. The optimum length of produced videos is unknown.
Sora's development team called it after the Japanese word for "sky", to signify its "unlimited imaginative capacity". [223] Sora's technology is an adjustment of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system using publicly-available videos as well as copyrighted videos licensed for that purpose, however did not expose the number or the exact sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the public on February 15, 2024, mentioning that it might produce videos up to one minute long. It also shared a technical report highlighting the approaches used to train the model, and the design's abilities. [225] It acknowledged a few of its imperfections, including battles simulating complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "excellent", but kept in mind that they must have been cherry-picked and might not represent Sora's typical output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, notable entertainment-industry figures have actually shown substantial interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry revealed his astonishment at the innovation's ability to create sensible video from text descriptions, citing its prospective to revolutionize storytelling and content production. He said that his excitement about Sora's possibilities was so strong that he had decided to stop briefly strategies for expanding his Atlanta-based film studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech recognition model. [228] It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech acknowledgment along with speech translation and language identification. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 designs. According to The Verge, a tune produced by tends to begin fairly however then fall under mayhem the longer it plays. [230] [231] In popular culture, initial applications of this tool were utilized as early as 2020 for the internet mental thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a snippet of lyrics and outputs tune samples. OpenAI mentioned the tunes "reveal local musical coherence [and] follow conventional chord patterns" but acknowledged that the songs do not have "familiar bigger musical structures such as choruses that duplicate" and that "there is a significant space" in between Jukebox and human-generated music. The Verge mentioned "It's highly remarkable, even if the outcomes sound like mushy versions of songs that might feel familiar", while Business Insider specified "remarkably, some of the resulting songs are memorable and sound legitimate". [234] [235] [236]
Interface
Debate Game
In 2018, OpenAI launched the Debate Game, raovatonline.org which teaches devices to debate toy issues in front of a human judge. The purpose is to research whether such a method may assist in auditing AI choices and in developing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every significant layer and neuron of 8 neural network models which are typically studied in interpretability. [240] Microscope was created to examine the functions that form inside these neural networks quickly. The designs consisted of are AlexNet, VGG-19, various variations of Inception, and various variations of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is an expert system tool developed on top of GPT-3 that offers a conversational user interface that permits users to ask concerns in natural language. The system then reacts with an answer within seconds.
1
The Verge Stated It's Technologically Impressive
margotravers26 edited this page 2025-06-01 05:15:45 +08:00